Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
Int J Pharm ; 655: 123998, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38490401

RESUMEN

The mucus is a defensive barrier for different drug-loaded systems. To overcome this obstacle, the crucial factor is the surface charge. Due to mucus negative charge behavior; it was revealed that negatively charged formulations can move across mucus, whereas positively charged nanoformulations could not diffuse via mucus due to interactions. However, cellular intake of negatively charged nanoformulations to the epithelium by endocytosis is less prominent as compared to positively charged carriers. Self-emulsifying drug delivery systems (SEDDS) improve the drug permeability of drugs, especially which have poor oral drug solubility. Moreover, SEDDS have the ability to reduce the degradation of drugs in the GI tract. Currently, drug carrier systems that can shift zeta potential from negative to positive were developed. The benefits of inducing zeta potential changing approach are that negatively charged nanoformulations permeate quickly across the mucus and surface charges reversed to positive at epithelium surface to increase cellular uptake. Among various systems of drug delivery, zeta potential changing SEDDS seem to signify a promising approach as they can promptly diffuse over mucus due to their smaller size and shape distortion ability. Due to such findings, mucus permeation and drug diffusion may improve by the mixture of the zeta potential changing approach and SEDDS.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Emulsiones , Disponibilidad Biológica , Células CACO-2 , Administración Oral , Solubilidad
3.
Pharmaceutics ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38140057

RESUMEN

PURPOSE: The aim of this research was to prepare adhesive nanoparticles for the topical application of Minoxidil (MXD). METHODS: Thiolated ß-CDs were prepared via conjugation of cysteamine with oxidized CDs. MXD was encapsulated within thiolated and unmodified ß-CDs. Ionic gelation method was used to prepare nanoparticles (Thio-NP and blank NP) of CDs with chitosan. Nanoparticles were analyzed for size and zetapotential. Inclusion complexes were characterized via FTIR. Drug dissolution studies were carried out. An in vitro adhesion study over human hair was performed. An in vivo skin irritation study was performed. Ex vivo drug uptake was evaluated by using a Franz diffusion cell. RESULTS: Thiolated ß-CDs presented 1804.68 ± 25 µmol/g thiol groups and 902.34 ± 25 µmol/g disulfide bonds. Nanoparticles displayed particle sizes within a range of 231 ± 07 nm to 354 ± 13 nm. The zeta potential was in the range of -8.1 ± 02 mV, +16.0 ± 05 mV. FTIR analyses confirmed no interaction between the excipients and drug. Delayed drug release was observed from Thio-NP. Thio-NP retained over hair surfaces for a significantly longer time. Similarly, drug retention was significantly improved. Thio-NP displayed no irritation over rabbit skin. CONCLUSION: Owing to the above results, nanoparticles developed with MXD-loaded thiolated ß-CDs might be a potential drug delivery system for topical scalp diseases.

4.
Pharmaceutics ; 15(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896205

RESUMEN

The primary objective of this study was to assess the potential utility of quince seed mucilage as an excipient within a graft copolymer for the development of an oral-controlled drug delivery system. The Cydonia oblonga-mucilage-based graft copolymer was synthesized via a free radical polymerization method, employing potassium per sulfate (KPS) as the initiator and N, N-methylene bisacrylamide (MBA) as the crosslinker. Various concentrations of monomers, namely acrylic acid (AA) and methacrylic acid (MAA), were used in the graft copolymerization process. Metoprolol tartarate was then incorporated into this graft copolymer matrix, and the resultant drug delivery system was subjected to comprehensive characterization using techniques such as Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The swelling behavior of the drug delivery system was evaluated under different pH conditions, and in vitro drug release studies were conducted. Furthermore, pharmacokinetic parameters including the area under the curve (AUC), maximum plasma concentration (Cmax), time to reach Cmax (Tmax), and half-life (t1/2) were determined for metoprolol-loaded hydrogel formulations in rabbit plasma, and these results were compared with those obtained from a commercially available product. The key findings from the study include observations that higher concentrations of acrylic acid (AA) and Cydonia oblonga mucilage (CM) in the graft copolymer enhanced swelling, while the opposite trend was noted at elevated concentrations of methacrylic acid (MAA) and N, N-methylene bisacrylamide (MBA). FTIR analysis confirmed the formation of the graft copolymer and established the compatibility between the drug and the polymer. SEM imaging revealed a porous structure in the prepared formulations. Additionally, the swelling behavior and drug release profiles indicated a pH-sensitive pattern. The pharmacokinetic assessment revealed sustained release patterns of metoprolol from the hydrogel network system. Notably, the drug-loaded formulation exhibited a higher Cmax (156.48 ng/mL) compared to the marketed metoprolol product (96 ng/mL), and the AUC of the hydrogel-loaded metoprolol was 2.3 times greater than that of the marketed formulation. In conclusion, this study underscores the potential of quince seed mucilage as an intelligent material for graft-copolymer-based oral-controlled release drug delivery systems.

5.
AAPS PharmSciTech ; 24(7): 194, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752361

RESUMEN

The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-ß-CD (SH-ß-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-ß-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-ß-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.

6.
Pak J Pharm Sci ; 36(4(Special)): 1319-1324, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37606022

RESUMEN

For the simultaneous measurement of Ethinylestradiol (EE) and Drospirenone (DP) in fixed-dose combination hormones tablets, a reverse-phase high-performance liquid chromatographic (RP-HPLC) method was developed. A specific, precise and accurate RP-HPLC method was developed and validated to analyse the drugs in rat plasma. The fluorescence detection for EE was made at λ= 200-310 nm and Ultraviolet-visible (UV/Vis) detection for DP was made at 270 nm. The typical EE and DP retention times were 4.19 and 5.30 minutes, respectively. The limit of detection (LOD) and limit of detection (LOQ) for EE were 0.121 and 0.282µg/mL and LOD and LOQ for DP were 2.23 and 7.697µg/mL respectively. The regression coefficient (r2) of EE and DP were 0.9937 and 0.9913 respectively. Precision's relative standard deviation (RSD) was less than 5%. The analyte recoveries of both drugs stayed within 95% of each other. All other validation parameters adhered to ICH standards. Throughout the analytical process, the analyte was stable. The advantages of the method developed include stability under different conditions and a low limit of quantification that was in micrograms. Its applicability was confirmed by the analysis of EE and DP levels in plasma samples in a designed pharmacokinetic study in rats after oral administration.


Asunto(s)
Bioensayo , Etinilestradiol , Animales , Ratas , Cromatografía Líquida de Alta Presión , Administración Oral
7.
Pak J Pharm Sci ; 36(3(Special)): 915-920, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37587698

RESUMEN

The current paper explains how to make mesoporous silica microparticles (MSM) by mixing water and dichloromethane. Several dichloromethane-water ratios were used to adjust the reaction mixture for the first time to easily synthesize mesoporous silica micro particles with regulated particle size. By carefully modifying the concentrations of water and dichloromethane, a higher level of consistency was achieved in the production of micro particles, i.e. to a 2:1 v/v ratio. It was discovered that variations in the dichloromethane-to-water ratios significantly affect the surface roughness and morphologies of mesoporous silica particles along with size. This is most likely because the solvent affects how quickly tetraethyl orthosilicate (TEOS) and how quickly inorganic species polymerize. In all experiments, conditions were maintained the same at 25oC temperature and 1000 rpm. Scanner electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray powder diffraction (XRD) methods were used to identify the structure of MSM. The in vitro cytotoxicity assays showed that the produced particles, which had a diameter of 1.0 m, were safe for usage in the cellular system.


Asunto(s)
Cloruro de Metileno , Proyectos de Investigación , Tamaño de la Partícula , Dióxido de Silicio/toxicidad , Agua
8.
Int J Biol Macromol ; 251: 126380, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37595715

RESUMEN

Bone tissue possesses intrinsic regenerative capabilities to address deformities; however, its ability to repair defects caused by severe fractures, tumor resections, osteoporosis, joint arthroplasties, and surgical reconsiderations can be hindered. To address this limitation, bone tissue engineering has emerged as a promising approach for bone repair and regeneration, particularly for large-scale bone defects. In this study, an injectable hydrogel based on kappa-carrageenan-co-N-isopropyl acrylamide (κC-co-NIPAAM) was synthesized using free radical polymerization and the antisolvent evaporation technique. The κC-co-NIPAAM hydrogel's cross-linked structure was confirmed using Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (1H NMR). The hydrogel's thermal stability and morphological behavior were assessed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Swelling and in vitro drug release studies were conducted at varying pH and temperatures, with minimal swelling and release observed at low pH (1.2) and 25 °C, while maximum swelling and release occurred at pH 7.4 and 37oC. Cytocompatibility analysis revealed that the κC-co-NIPAAM hydrogels were biocompatible, and hematoxylin and eosin (H&E) staining demonstrated their potential for tissue regeneration and enhanced bone repair compared to other experimental groups. Notably, digital x-ray examination using an in vivo bone defect model showed that the κC-co-NIPAAM hydrogel significantly improved bone regeneration, making it a promising candidate for bone defects.

9.
PLoS One ; 18(8): e0290223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607173

RESUMEN

Prime objective of the current research was to develop a stable nimesulide emulgel with the help of arabinoxylan, a natural gelling agent extracted from Plantago ovata. The response surface methodology was used by a Design Expert 10 software to formulate and optimize the emulgel. The experimental design approach evaluated the impact of independent and dependent variables. Independent variables were different concentrations of arabinoxylan, span 80 and tween 20, whereas, dependent variables were viscosity, pH, and content uniformity. FTIR demonstrated the compatibility of nimesulide with the excipients. Stability study indicated no phase separation and no change in pH for formulation F1, F3 and F4. The negative values of zeta potential revealed the excellent stability of emulgel. Viscosity, spreadability and extrudability values were in desired range. Ex-vivo permeation study illustrated 86%, 55% and 66% release of the drug over a period of 24 h from the formulations F1, F3 and F4, respectively. Analgesic effect of the optimized emulgel was significantly higher in test group as compared to control and did not produce any sort of irritation. Therefore, it can be concluded that the newly developed emulgel based on arabinoxylan, as gelling agent, appear to be an effective drug delivery system.


Asunto(s)
Plantago , Excipientes , Movimiento Celular , Geles
10.
Saudi Pharm J ; 31(8): 101695, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520120

RESUMEN

The current research was to develop nanoparticles based on Mimosa pudica mucilage (MPM) that could encapsulate losartan potassium (LP). Nanoparticles (NPs) produced through ionic-gelation method; the polymerization of the mucilage carried out using calcium chloride as cross-linking agent. The MPMLP-NPs demonstrated vastly enhanced pharmaceutical characteristics, presented discrete surface with spherical shape of 198.4-264.6 nm with PDI ranging 0.326-0.461 and entrapment efficiency was in the range of 80.65 ± 0.82-90.79 ± 0.96%. FTIR and DSC indicated the stability of drug during the formulation of nanoparticles. An acute oral toxicity investigation found no significant alterations in behavior and histopathology criteria. The MPMLP-NPs formulation revealed the better rates and sustained effect as assessed with the commercial product. Moreover, low dose of MPMLP-NPs showed similar anti-hypertensive effect as assessed with the marketed tablet.

11.
Int J Pharm ; 643: 123244, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463619

RESUMEN

The study aims to develop a new multifunctional biopolymer-based hydrogel membrane dressing by adopting a solvent casting method for the controlled release of cefotaxime sodium at the wound site. Sodium alginate enhances collagen production in the skin, which provides tensile strength to healing tissue. Moreover, the significance of extracellular molecules such as hyaluronic acid in the wound the healing cascade renders these biopolymers an essential ingredient for the fabrication of hydrogel membranes via physical crosslinking (hydrogen bonding). These membranes were further investigated in terms of their structure, and surface morphology, as well as cell viability analysis. A membrane with the most suitable characteristics was chosen as a candidate for cefotaxime sodium loading and in vivo analysis. Results show that the 3D porous nature of developed membranes allows optimum water vapor and oxygen transmission (>8.21 mg/mL) to divert excessive wound exudate away from the diabetic wound bed, MTT assay confirmed cell viability at more than 80%. In vivo results confirmed that the CTX-HA-Alg-PVA hydrogel group showed rapid wound healing with accelerated re-epithelization and a decreased inflammatory response. Conclusively, these findings indicate that CTX-HA-Alg-PVA hydrogel membranes exhibit a suitable niche for use as dressing membranes for healing of diabetic wounds.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Ácido Hialurónico/química , Alginatos , Biomimética , Cicatrización de Heridas , Cefotaxima
12.
Gels ; 9(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37367144

RESUMEN

The present study was conducted to fabricate and characterize mucilage-based polymeric networks of Aloe vera for controlled drug release. Aloe vera mucilage was used to develop a polymeric network via the free-radical polymerization method using potassium persulphate as the initiator, N' N'-Methylene bisacrylamide as the crosslinker, and acrylamide as the monomer. Using varying concentrations of Aloe vera mucilage, crosslinker, and monomer, we developed different formulations. Swelling studies were conducted at pH 1.2 and 7.4. Concentrations of polymer, monomer, and crosslinker were optimized as a function of swelling. Porosity and gel content were calculated for all samples. FTIR, SEM, XRD, TGA, and DSC studies were conducted for the characterization of polymeric networks. Thiocolchicoside was used as a model drug to study the in vitro release in acidic and alkaline pH. Various kinetics models were applied by using a DD solver. Increasing content of monomer and crosslinker swelling, porosity, and drug release decreased while gel content increased. An increase in Aloe vera mucilage concentration promotes swelling, porosity, and drug release of the polymeric network but decreases gel content. The FTIR study confirmed the formation of crosslinked networks. SEM indicated that the polymeric network had a porous structure. DSC and XRD studies indicated the entrapment of drugs inside the polymeric networks in amorphous form. The analytical method was validated according to ICH guidelines in terms of linearity, range, LOD, LOQ, accuracy, precision, and robustness. Analysis of drug release mechanism revealed Fickian behavior of all formulations. All these results indicated that the M1 formulation was considered to be the best polymeric network formulation in terms of sustaining drug release patterns.

13.
J Mech Behav Biomed Mater ; 142: 105830, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37040688

RESUMEN

The current work examines the structural and biological characteristics of doped Zn, Mg, and Sr. Na2O-CaO-Si2O-P2O5 silicate ceramics synthesized by the solid state method. The undoped sample showed amorphous behavior after sintering at the 800 OC while doping of SrO, MgO and ZnO induce crystal growth; and a single phase of Parawollastonite (JCPDS# 00-043-1460) was identified in both doped samples. The strontium doped sample showed the highest value of the dielectric as compared to other three samples. The Sr doped sample had higher dielectric value because the size of Sr2+ is greater than Ca+2 so it will possess the higher polarizing power. Conductivity of Zn and Sr doped samples increased with increase in frequency and Mg doped decrease with increase in frequency. Bioactivity test confirmed that doped samples were more bioactive as compared to undoped samples, and Sr doped sample showed superior bioactivity as compared to other samples.


Asunto(s)
Cerámica , Silicatos , Ensayo de Materiales , Silicatos/química , Cerámica/química , Estroncio/química , Zinc
14.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985803

RESUMEN

BACKGROUND: Cefixime (CFX) belongs to a group of third-generation cephalosporin antibiotics with low water solubility and low intestinal permeability, which ultimately leads to significantly low bioavailability. AIM: This study aimed to increase solubility, improve drug release, and intestinal permeability of CFX by loading into SEDDS. METHODS: Suitable excipients were selected based on drug solubility, percent transmittance, and emulsification efficiency. Pseudo-ternary phase diagram was fabricated for the identification of effective self-emulsification region. The best probably optimized formulations were further assessed for encumbered drug contents, emulsification time, cloud point measurement, robustness to dilution, mean droplet size, zeta potential, polydispersity index (PDI), and thermodynamic and chemical stability. Moreover, in vitro drug release studies and ex vivo permeation studies were carried out and apparent drug permeability Papp of different formulations was compared with the marketed brands of CFX. RESULTS: Amongst the four tested SEDDS formulations, F-2 formulation exhibited the highest drug loading of 96.32%, emulsification time of 40.37 ± 3 s, mean droplet size of 19.01 ± 1.12 nm, and demonstrated improved long-term thermodynamic and chemical stability when stored at 4 °C. Release studies revealed a drug release of 97.32 ± 4.82% within 60 min in simulated gastric fluid. Similarly, 97.12 ± 5.02% release of CFX was observed in simulated intestinal fluid within 120 min; however, 85.13 ± 3.23% release of CFX was observed from the marketed product. Ex vivo permeation studies displayed a 2.7-fold increase apparent permeability compared to the marketed product in 5 h. CONCLUSION: Owing to the significantly improved drug solubility, in vitro release and better antibacterial activity, it can be assumed that CFX-loaded SEDDS might lead to an increased bioavailability and antibacterial activity, possibly leading to improved therapeutic effectiveness.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tensoactivos , Cefixima , Tensoactivos/química , Emulsiones/química , Solubilidad , Liberación de Fármacos , Administración Oral , Antibacterianos/farmacología , Permeabilidad , Disponibilidad Biológica , Tamaño de la Partícula
15.
Int J Biol Macromol ; 233: 123585, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758757

RESUMEN

The disease-related suffering in colorectal cancer remains prevalent despite advancements in the field of drug delivery. Chemotherapy-related side effects and non-specificity remain a challenge in drug delivery. The great majority of hydrophobic drugs cannot be successfully delivered to the colon orally mainly due to poor solubility, low bioavailability, pH differences, and food interactions. Polymeric nanoparticles are potential drug delivery candidates but there are numerous limitations to their usefulness in colon cancer. The nanoparticles are removed from the body rapidly by p-glycoprotein efflux, inactivation, or breakdown by enzymes limiting their efficiency. Furthermore, there is a lack of selectivity in targeting cancer cells; nanoparticles may also target healthy cells, resulting in toxicity and adverse effects. The study aimed to use nanoparticles for specific targeting of the colorectal tumor cells via the oral route of administration without adverse effects. Folic acid (FA), a cancer-targeting ligand possessing a high affinity for folate receptors overexpressed in colorectal cancers was conjugated to sodium alginate- nanoparticles by NH2-linkage. The folic-acid conjugated nanoparticles (FNPs) were delivered to the colon by a pH-sensitive hydrogel synthesized by the free radical polymerization method to provide sustained drug release. The developed system referred to as the "Hydrogel-Nano (HN) drug delivery system," was specifically capable of delivering diferourylmethane to the colon. The HN system was characterized by DLS, FTIR, XRD, TGA, DSC, and SEM. The FNPs size, polydispersity index, and zeta potential were measured. The folic acid-conjugation to nanoparticles' surface was studied by UV-visible spectroscopy using Beer-Lambert's law. In-vitro studies, including sol-gel, porosity, drug loading, entrapment efficiency, etc., revealed promising results. The swelling and release studies showed pH-dependent release of the drug in colonic pH 7.4. Cellular uptake and cytotoxicity studies performed on FR-overexpressed Hela cell lines and FR-negative A-549 cell lines showed facilitated uptake of nanoparticles by folate receptors. A threefold increase in Cmax and prolongation of the mean residence time (MRT) to 14.52 +/- 0.217 h indicated sustained drug release by the HN system. The findings of the study can provide a sufficient ground that the synergistic approach of the HN system can deliver hydrophobic drugs to colorectal cancer cells via the oral route, but further in-vivo animal cancer model studies are required.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Humanos , Animales , Células HeLa , Ácido Fólico/química , Hidrogeles , Alginatos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas/química , Portadores de Fármacos/química
16.
Int J Biol Macromol ; 227: 1203-1220, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473525

RESUMEN

Biopolymer-based thermoresponsive injectable hydrogels with multifunctional tunable characteristics containing anti-oxidative, biocompatibility, anti-infection, tissue regeneration, and/or anti-bacterial are of abundant interest to proficiently stimulate diabetic wound regeneration and are considered as a potential candidate for diversified biomedical application but the development of such hydrogels remains a challenge. In this study, the Chitosan-CMC-g-PF127 injectable hydrogels are developed using solvent casting. The Curcumin (Cur) Chitosan-CMC-g-PF127 injectable hydrogels possess viscoelastic behavior, good swelling properties, and a controlled release profile. The degree of substitution (% DS), thermal stability, morphological behavior, and crystalline characteristics of the developed injectable hydrogels is confirmed using nuclear magnetic resonance (1H NMR), thermogravimetric analysis, scanning electron microscopy (SEM), and x-ray diffraction analysis (XRD), respectively. The controlled release of cur-micelles from the hydrogel is evaluated by drug release studies and pharmacokinetic profile (PK) using high-performance liquid chromatography (HPLC). Furthermore, compared to cur micelles the Cur-laden injectable hydrogel shows a significant increase in half-life (t1/2) up to 5.92 ± 0.7 h, mean residence time (MRT) was 15.75 ± 0.76 h, and area under the first moment curve (AUMC) is 3195.62 ± 547.99 µg/mL*(h)2 which reveals the controlled release behavior. Cytocompatibility analysis of Chitosan-CMC-g-PF127 hydrogels using 3T3-L1 fibroblasts cells and in vivo toxicity by subcutaneous injection followed by histological examination confirmed good biocompatibility of Cur-micelles loaded hydrogels. The histological results revealed the promising tissue regenerative ability and shows enhancement of fibroblasts, keratinocytes, and collagen deposition, which stimulates the epidermal junction. Interestingly, the Chitosan-CMC-g-PF127 injectable hydrogels ladened Cur exhibited a swift wound repair potential by up-surging the cell migration and proliferation at the site of injury and providing a sustained drug delivery platform for hydrophobic moieties.


Asunto(s)
Quitosano , Curcumina , Diabetes Mellitus , Humanos , Quitosano/química , Curcumina/farmacología , Curcumina/química , Carboximetilcelulosa de Sodio , Preparaciones de Acción Retardada , Micelas , Hidrogeles/química
18.
Biochem Biophys Res Commun ; 637: 58-65, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375251

RESUMEN

Malaria is an infectious disease caused by Plasmodium parasites and has high mortality rates, especially among children in African and Southeast Asian countries. Patients with hemolytic anemia are suggested to adapt protective measures against malarial infection. Nicotinamide adenine dinucleotide (NAD+) is a crucial cofactor associated with numerous biological processes that maintain homeostasis in all living organisms. In a previous study, we had demonstrated that the deficiency of nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3), an enzyme catalyzing NAD+ synthesis, causes hemolytic anemia accompanied by a drastic decline in the NAD+ levels in the erythrocytes. It is well known that hemolytic anemia is linked to a reduced risk of malarial infections. In the present study, we investigated whether hemolytic anemia caused by Nmnat3 deficiency is beneficial against malarial infections. We found that Nmnat3 deficiency exacerbated malarial infection and subsequently caused death. Moreover, we demonstrated that the NAD+ levels in malaria-infected Nmnat3 red blood cells significantly increased and the glycolytic flow was largely enhanced to support the rapid growth of malarial parasites. Our results revealed that hemolytic anemia induced by the deletion of Nmnat3 was harmful rather than protective against malaria.


Asunto(s)
Anemia Hemolítica , Malaria , Nicotinamida-Nucleótido Adenililtransferasa , Niño , Humanos , Anemia Hemolítica/complicaciones , Anemia Hemolítica/genética , Eritrocitos/metabolismo , Malaria/complicaciones , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Animales
19.
J Diabetes Metab Disord ; 21(2): 1991-2004, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36404821

RESUMEN

Background: Fasting during Ramadan is mandatory for all adult healthy Muslims. International studies found that most Muslims with diabetes mellitus fast during Ramadan. The main risk factors are hypoglycemia, Hyperglycemia, diabetic ketoacidosis, and dehydration during fasting. Therefore, stratification of the risks for severe acute diabetes complications needs to be considered for each individual and strategies personalized to advert these complications. The advent of new diabetes medications which are effective yet with a better safety profile and monitoring of blood glucose levels during the day are important to reduce the risk of untoward effects of hypoglycemia and hyperglycemia during Ramadan fasting. Here we review the safety and effectiveness of the newer diabetes medications for Ramadan fasting and whether it is safe to perform fasting after bariatric surgery. Methods: An extensive literature search using PubMed and Google Scholar was done using different search terms. The eligible studies were 48 randomized controlled trials, prospective observational studies, and reviews from January 2008 to June 2022 which were conducted in individuals living with diabetes. Results and Conclusions: The newer diabetes medications such as GLP-1 agonists, DPP-4 inhibitors, SGLT-2 inhibitors, and new Insulin therapy are thought to be safe and effective during fasting of Ramadan. These medications are associated with a reduction in HbA1c, body weight, systolic blood pressure and risk of hypoglycemia during Ramadan fasting. However, further studies with larger sample size are needed to confirm the efficacy and safety of these newer medications during Ramadan fasting. Individuals with Bariatric surgery should seek advice and approval to fast from the bariatric dietician, physician, and surgeon before the beginning of the month of Ramadan.

20.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144684

RESUMEN

Hexanary high-entropy oxides (HEOs) were synthesized through the mechanochemical sol-gel method for electrocatalytic water oxidation reaction (WOR). As-synthesized catalysts were subjected to characterization, including X-ray diffraction (XRD), Fourier transforms infrared (FTIR) analysis, and scanning electron microscopy (SEM). All the oxide systems exhibited sharp diffraction peaks in XRD patterns indicating the defined crystal structure. Strong absorption between 400-700 cm-1 in FTIR indicated the formation of metal-oxide bonds in all HEO systems. WOR was investigated via cyclic voltammetry using HEOs as electrode platforms, 1M KOH as the basic medium, and 1M methanol (CH3OH) as the facilitator. Voltammetric profiles for both equiatomic (EHEOs) and non-equiatomic (NEHEOs) were investigated, and NEHEOs exhibited the maximum current output for WOR. Moreover, methanol addition improved the current profiles, thus leading to the electrode utility in direct methanol fuel cells as a sequential increase in methanol concentration from 1M to 2M enhanced the OER current density from 61.4 to 94.3 mA cm-2 using NEHEO. The NEHEOs comprising a greater percentage of Al, ([Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4) displayed high WOR catalytic performance with the maximum diffusion coefficient, D° (10.90 cm2 s-1) and heterogeneous rate constant, k° (7.98 cm s-1) values. These primary findings from the EC processes for WOR provide the foundation for their applications in high-energy devices. Conclusively, HEOs are proven as novel and efficient catalytic platforms for electrochemical water oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...